Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
16th ROOMVENT Conference, ROOMVENT 2022 ; 356, 2022.
Article in English | Scopus | ID: covidwho-2231887

ABSTRACT

The new decade will be a major challenge for built environment to satisfy building users and owners demands for superior IEQ in the work environment and tackle infection risk issues brought by SARS-CoV-2 pandemic. We collected thermal comfort and IAQ data from modern Estonian office buildings showing that improvements are needed in whole chain of the HVAC science, engineering and manufacturing because current solutions in these buildings have led to many complaints of draught and readjustments of supply air temperature have typically compromised energy performance. To achieve Category II or I IEQ, more systematic design methodologies are needed. Additionally, ventilation rate and air distribution dimensioning based on respiratory infection risk has to be taken into use as a complementary method of existing ones for office space AC and ventilation design, where both net floor area and occupant number define the required ventilation. Based on air velocity and temperature (operative, supply air and local) measurements conducted in five office buildings a new IEQ design methods were developed to satisfy the thermal comfort indices leading to low occupant complaints and not compromising energy performance at the same time. In well ventilated Category I and II office spaces, control of draught risk is an extensive design task for which new methodology was developed. Our method focuses separately on IEQ parameters during heating, cooling and midseason, from which the latter one is the longest and the most dominating one. The design method is presented by connecting thermal comfort and infection risk with ventilation rate. Infection risk based air flow rate selection diagram and corresponding air velocity diagrams for an open plan office and 3-person room showing the possibilities to size ventilation for the event reproduction number of R = 0.5 were constructed. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)

2.
Environ Sci Technol ; 56(2): 1125-1137, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1607160

ABSTRACT

Some infectious diseases, including COVID-19, can undergo airborne transmission. This may happen at close proximity, but as time indoors increases, infections can occur in shared room air despite distancing. We propose two indicators of infection risk for this situation, that is, relative risk parameter (Hr) and risk parameter (H). They combine the key factors that control airborne disease transmission indoors: virus-containing aerosol generation rate, breathing flow rate, masking and its quality, ventilation and aerosol-removal rates, number of occupants, and duration of exposure. COVID-19 outbreaks show a clear trend that is consistent with airborne infection and enable recommendations to minimize transmission risk. Transmission in typical prepandemic indoor spaces is highly sensitive to mitigation efforts. Previous outbreaks of measles, influenza, and tuberculosis were also assessed. Measles outbreaks occur at much lower risk parameter values than COVID-19, while tuberculosis outbreaks are observed at higher risk parameter values. Because both diseases are accepted as airborne, the fact that COVID-19 is less contagious than measles does not rule out airborne transmission. It is important that future outbreak reports include information on masking, ventilation and aerosol-removal rates, number of occupants, and duration of exposure, to investigate airborne transmission.


Subject(s)
Air Pollution, Indoor , COVID-19 , Aerosols , Disease Outbreaks , Humans , SARS-CoV-2 , Ventilation
3.
J Hosp Infect ; 110: 89-96, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1030909

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused untold disruption throughout the world. Understanding the mechanisms for transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is key to preventing further spread, but there is confusion over the meaning of 'airborne' whenever transmission is discussed. Scientific ambivalence originates from evidence published many years ago which has generated mythological beliefs that obscure current thinking. This article collates and explores some of the most commonly held dogmas on airborne transmission in order to stimulate revision of the science in the light of current evidence. Six 'myths' are presented, explained and ultimately refuted on the basis of recently published papers and expert opinion from previous work related to similar viruses. There is little doubt that SARS-CoV-2 is transmitted via a range of airborne particle sizes subject to all the usual ventilation parameters and human behaviour. Experts from specialties encompassing aerosol studies, ventilation, engineering, physics, virology and clinical medicine have joined together to produce this review to consolidate the evidence for airborne transmission mechanisms, and offer justification for modern strategies for prevention and control of COVID-19 in health care and the community.


Subject(s)
Aerosols , Air Microbiology , COVID-19/prevention & control , COVID-19/transmission , Infection Control/methods , Pandemics/prevention & control , Ventilation/methods , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL